
Formal Semantics of Linearly Typed Stackful Coroutines

Aryan Wadhwani
Purdue University

wadhwani@purdue.edu

1. Introduction
Performance is crucial for low-level systems languages,
and supporting various concurrency constructs in these lan-
guages is in turn necessary to provide programmers with bet-
ter abstractions while implementing concurrent algorithms.
One such abstraction is coroutines, which allows for coop-
erative task management on a single thread. In other words,
functions are able to coordinate with each other to volun-
tary yield control to allow other functions to execute, before
being resumed at the point at which it was halted.

Asynchronous functions, or functions that do not return
a value immediately, are a language construct that can be
built on top of coroutines. For example, a function that reads
from a file would not return a value until the file has been
read. This is a problem because the function would block
the rest of the program from executing. Coroutines allow for
the function to be suspended and resumed at a later time,
allowing the rest of the program to continue executing.

Additionally, we can consider finite state machines,
which are programs that hold a finite number of states, each
being able to transition to a certain set of other states, based
on the result of computations on their current state. Although
these can also be implemented using goto statements, or
mutually recursive functions, These are most naturally rep-
resented by symmetric coroutines, where each state is repre-
sented by a coroutine, and the transitions are represented by
yielding control to another coroutine.

Languages like C and C++, with very few memory safety
features built-in, expect programmers to explicitly handle
memory allocation and deallocation, which if done incor-
rectly can lead to memory leaks, use-after-free and several
other memory errors.

Hence, in modern languages, there has also been a push
towards memory safety. Most languages, like Java, Go, and
Javascript have opted to use Garbage Collection to handle

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN [to be supplied]. . . $15.00

memory management and provide some improvements in
memory safety of their programs.

However, this requires the program to be periodically
paused to perform a garbage collection pass, which can be
an expensive operation, and unusable for some workloads.
Additionally, garbage collection may still lead to memory
leaks, since the garbage collector may not be able to identify
all the memory that is no longer being used by a program.
These languages still also fail to provide solutions to various
other related memory errors, such as null pointer derefer-
ences, race conditions, and resource leaks.

A new approach, taken by languages like Rust is to in-
stead use affine/linear types to statically check and guaran-
tee memory safety in programs. By introducing the notion
of ownership, there is strictly a single variable that is bound
to a value, and the value can be destroyed/unallocated when
the variable goes out of scope. The ownership of a value can
be transfered, but the previous owner can no longer access
the value.

To have pointers to values, there is also a notion of ref-
erences, where a value can either have multiple read-only
references, or a single mutable reference. Additionally, life-
times of the references are statically checked to ensure that
they do not outlive the value behind the reference. These
rules provide Rust with much stronger memory safety, as
well as thread safety, guarantees, without having to rely on
garbage collection or runtime checks.

By introducing affine type semantics to coroutines, we
can provide a more robust and safe way to use coroutines
in a memory-safe manner. We can provide guarantees about
the lifetimes of the values that are being passed between
coroutines, and ensure that the values are not used after they
have been destroyed.

Hence, to explore this further, this paper proposes defin-
ing the semantics for a subset of the Rust language, par-
ticularly covering the concepts of ownership, mutable and
immutable references and lifetimes. Then, this paper de-
fines the semantics for stackful coroutines in this language.
Additionally, by representing these definitions using the K
Framework, we are able to also provide an executable se-
mantics for our language.



2. Background
2.1 Essence of Rust
The foundations of linear types, used by Rust, began with
the work of Wadler (1990), which introduced the idea of
linear types for functional languages, with the motivation of
creating values that cannot be duplicated or discarded. This
would allow functional languages to treat resources (like File
Input/Output) as linear values, while allowing the rest of
the values to be non-linear. The non-linear values would be
safely garbage collected, while the linear values would be
deallocated when they are no longer needed.

The paper also discussed a relaxed constraint from pure
linearity, where there is strictly a single reference to a value,
to allowing multiple references to a value while reading,
as long as there is only a single reference to the linear
value while writing. The latter constraint is similar to the
borrowing semantics introduced by Rust.

As discussed in the paper, pure linearity, where there is
strictly one reference to a value, is a stronger constraint than
is required. While reading, multiple references to a value
would still be safe, as long as their is only a single refer-
ence to the linear value the value while writing. This is the
approach taken by Rust, which allows multiple references
to a value while reading, but only a single reference when a
write is performed.

There have been several previous papers that provide se-
mantics for portions of Rust’s language. One such paper,
Reed (2015), particularly focuses on creating formal seman-
tics for the unique pointers and borrowed references, by cre-
ating a model of the Rust language, Patina.

In Patina however, the program requires explicit frees to
be added, as the frees define the end of a variable’s lifetime,
as scopes are not present in this language, and to also avoid
nested deallocations. This is to say, the Rust program:

{

let mut x: i32 = 5;

{

let y: &i32 = &10;

}

x = 10;

}

can be represented in a Patina program as:

let x: mut ~int = ~5;

let y: ~~int = ~~10;

free(*y);

free(y);

x = 10;

free(x);

The core idea behind proving memory safety, is the idea
of a shadow heap, which represents what each variable is
bound to in memory, which may include partially deallo-
cated values. For example, if we had x = [1,′ a′], initially

the shadow heap for x would hold [ int, char]. If we later
freed x.1, we would hold [ int, uninit]. We can use this to
assert later that x.1 cannot be dereferenced, unless a new
value is assigned to it.

Using this idea, this paper can statically identify null
pointer dereferences, use-after-free errors, and missing frees.
The paper goes on to show that any well-typed program with
an empty shadow heap will be memory safe.

Another paper, Pearce (2021), goes further in also provid-
ing formal semantics for deciding between copy- and move-
operations, lifetimes, and drops for simple store and load op-
erations on variables, and then further demonstrates how this
simple model can be extended to support conditional state-
ments and tuples.

2.2 Coroutines
Coroutines, as a language construct, has had different defi-
nitions and expressive power in different languages. Moura
and Ierusalimschy (2009) provides a clear classification of
coroutines, based on three main properties.

First, coroutines can be symmetric or asymmetric. Sym-
metric coroutines provide a single operation to yield control
to another coroutine, and can be resumed by any other corou-
tine. On the other hand, asymmetric coroutines provide two
operations, one to invoke a coroutine, and another to yield
control to the caller of this coroutine. Hence, there is a clear
hierachy of control, where the caller of the coroutine can
only resume the coroutine, and the coroutine can only yield
control to the caller.

Second, coroutines can be first class or constrained.
First class coroutines can be passed as arguments to other
functions, and can be returned from functions. On the other
hand, constrained coroutines cannot be directly manipulated
by the programmer. For example, the iterator construct in
many modern languages can be considered a constrained
coroutine, as the programmer cannot directly manipulate the
state of the iterator.

Third, coroutines can be stackful or stackless. Stackful
coroutines have access to their own stack for calling func-
tions, and hence can suspend their execution from within
nested functions. On the other hand, stackless coroutines do
not have access to their own stack, and hence cannot suspend
their execution from within nested functions.

The paper then argues in favor of first-class stackful
asymmetric coroutines, also defined as Full asymmetric
coroutines as they provide a simple interface for the pro-
grammer, while retaining the expressive power of its sym-
metric counterpart, as well as one-shot continuations.

Another paper, Anton and Thiemann (2011), introduces
a static type system for first-class stackful coroutines, which
can either be symmetric or asymmetric. The language from
this paper distinctly separates the initialization of a coroutine
from its invokation, and also separates the values that come
from an invokation into yielded values and the final returned
value.



Expressions in the language are associated with three
types: the type it may yield, the type it expects when it
resumes, and the type it may return. These types are nec-
essary to ensure that coroutines are correctly type-checked
through nested function or coroutine calls.

3. Motivating Example
In this example, we wish to implement a join operation on
two sorted tables, where the join is performed on the id
column. The tables are stored in two separate files, and we
wish to read the tables in parallel, and yield the joined rows
as they are read.

coro read_rows(s: &str)() -> Row {

let mut file = open(s);

while !eof(file) {

let buf: [Row] = read_next(file, 100);

for i in 0..100 {

yield buf[i];

}

}

}

coro join(s1: str, s2: str)() -> Row {

let coro1 = read_rows(&s1);

let coro2 = read_rows(&s2);

let mut r1 = coro1()?;

let mut r2 = coro2()?;

loop {

if row1.id == row2.id {

yield &row1;

r1 = coro1()?;

r2 = coro2()?;

} else if row1.id < row2.id {

r1 = coro1()?;

} else {

r2 = coro2()?;

}

}

}

fn search(s: str) {

let coro = join("table1", "table2");

for row in coro() {

if row.id == &s {

print(row);

}

}

}

By having coroutines to implement the read_row oper-
ation, we can easily have a buffer of rows in memory, and
yield them as they are read. This allows us to read the ta-
bles in parallel, and yield the joined rows as they are read.
Although this could still be implemented using structs and

iterators, the coroutines provide a simple interface for the
programmer.

The yielded row from the read_rows is performing a
move operation, as the row is taken by value, and not ref-
erence. This move operation can be shown to be sound, as
the row is not used after it is yielded. Moreover, attempting
to yield rows by reference would not be allowed, as the row
is not guaranteed to be valid after the coroutine yields con-
trol, since the buffer, in which it is held, may be overwritten
by the next read operation.

On the other hand, the join coroutine yields rows by
reference, as the rows are guaranteed to be valid after the
coroutine yields control. This is because the rows are not
overwritten by the next read operation, as the coro call is
performed after row exits its scope.

Another feature from Rust’s type system that can be
brought in for coroutines is propagating returns, in a sim-
ilar manner to how Errors and None values are propagated
from a function. Applying the ? allows us to unwrap and
either early return the returned value, or continue execution
with the yield value.

Hence, in this example we’re able to show why linear
types work well with coroutines, as we can guarantee that
values and references that are yielded from a callee are not
used after they yield control. Without this constraint from
linear types, callees would be able to mutate values that are
yielded by them, which would in turn cause the caller to
observe changed values as well. We also guarantee that if a
reference is yielded from a callee, it is guaranteed to be valid
after the callee yields control, which would prevent runtime
errors such as use-after-free.

4. Approach
4.1 Methodology
Implementing coroutines can either be done in the language
level, or as a library.There currently do exist libraries that
support coroutines in Rust, such as coroutine-rs and
corosensei. However, these libraries both have their own
drawbacks.

coroutine-rs is a library that implements asymmetric
first-class coroutines, and is implemented using the setjmp
and longjmp functions. This library however, relies on un-
safe code to copy over the stack of the caller to the callee,
and hence is not compatible with the Rust borrow checker.
Additionally, this library also does not support stackful
coroutines, and hence cannot suspend their execution from
within nested functions. Finally, the library only allows a
primitive integer type to be used as the input to the corou-
tine.

Implementing coroutines in the language level would be
more desirable, as we can type-check coroutines with more
information available to us. We would also need to introduce
additional type information to the language, such as the type
of the yielded value, and the type of the returned value.



This would allow us to type-check coroutines with nested
function calls, and also allow us to propagate returns from
coroutines.

Hence, we wish to define our own subset of the Rust
language, and implement coroutines in this subset. The main
features that need to be implemented are the ownership,
moving, borrowing, and lifetime semantics of the language.
We would also want to implement a few data types like
integers, strings, and arrays, as well as a few control flow
constructs like loops and conditionals. Finally, we would
also want to implement a few functions that would allow us
to test our coroutines.

The K framework allows us to define a language through
its syntax and operational semantics, and accordingly im-
plements the parsing, compilation, and test-case generation.
This would allow us to easily define our language, and test
our implementation against programs written in our lan-
guage. Wang et al. (2018) has implemented a subset of Rust
in K, for an earlier version of the framework. Although this
project is also implemeneted using K, the semantics used are
different from the ones introduced in this paper.

4.2 Approach for Coroutines
First, we define what behavior we expect from our corou-
tines. A coroutine is expected to consistently yield values of
the same type until they terminate. Additionally, the corou-
tine can take in some initial arguments of one type, and re-
ceive an argument of another type each time it is resumed.

When a coroutine is instantiated, it creates a new stack
frame, and copies over the initial values to the coroutine.
The coroutine can then be called with an input value, and the
coroutine will execute until it yields a value. The coroutine
can be called again with a new input value, and will always
continue execution from where it left off. After the program
ends, any calls to the coroutine will block.

We define coroutines to have a type Coro(τ1τ2τ3), where
τ1 is the type for the initial value for to the coroutine, τ2 is
the type of the input to the coroutine, and τ3 is the type of
the yielded value.

The Coro type is only permitted to have a single opera-
tion defined on it, which is the start call, which is used to
instantiate the coroutine. When the coroutine is first instan-
tiated with τ1, it then creates a Frame(τ2τ3) object. We can
then call the coroutine, i.e, a Frame type, with an input
value of type τ2, and the coroutine will copy over the input
value to the Frame’s stack frame, and then resume execu-
tion from where it left off. The coroutine will then continue
execution until it reaches a yield a value of type τ3, where
the calling frame can continue execution, with the value that
was yielded now available.

Stackful Coroutines
To support stackful coroutines, we need to embed more
information in our functions, for them to be able to suspend
their execution. However, we also need to ensure, at every

call to resume a coroutine’s execution, we’re able to provide
the arguments from resume to the caller. To do this, there are
two approaches.

4.2.1 Ensuring the argument names remain in scope
If a function is called from within a coroutine, it should
be able to yield values too, as long as values are of the
same type. Finally, since a coroutine could be resumed from
within a nested function, we need to be able to resume
execution from within a nested function. Hence, we expect
the function to also have one of its arguments be the same
type as the resume type for the coroutine.

In other terms, when we have a coroutine defined with
type Coro(τ1, τ2, τ3), and the coroutine at some point calls
a function with type τ4 → τ5, τ4 must not only be the same
type as τ2, but must also have the same identifier.

This way, we always ensure that the resume arguments
remain in scope, and in turn, at every resumption of the
coroutine, we can provide the arguments from the caller to
the coroutine.

However, this seems confusing to the developer, as they
must account for each function called by a coroutine that
also yields values to have a specific argument, always ”fit-
ting” the coroutine’s resume type, which may change value
after each yield call.

4.2.2 Passing the resume arguments to yield
In this method, we instead expect the yield command to
return the value passed in as an argument, which ensures
that regardless of the function we’re in, we’re able to resume
execution from the caller.

In other terms, when we have a coroutine defined with
type Coro(τ1, τ2, τ3), when we call yield η1, with η1
being of type τ3, we expect the yield expression to provide a
value of type τ2 upon resumption of the coroutine.

This seems more intuitive, as we can occasionally ignore
the yielded value’s types, and the times we expect it, we use
our regular typing rules to just ensure that the type of the
yield value is same as the type of the variable assigned to.
For simplicity, we’ll assume only one yield value is returned,
but this can be easily extended to multiple yield values if we
add tuples to our language.

4.3 Linear Typing
In our model, every value that’s created has a memory loca-
tion. If we had let x: int = 5, we would create a mem-
ory location that holds the value 5, and the state that the vari-
able x currently holds that location.

To define executable semantics for linear types, we wish
to attach specific information to each memory location. By
attaching the linear type information to memory locations,
over the variables that reference them directly, we’re able to
better understand different issues, like aliasing, when mem-
ory’s moved, and when memory’s dropped. With this in



mind, we define the following metadata for each memory
location.

4.3.1 Liveness
When a location is created, it is added to the set of alive
variables. As long as a location’s alive, it is safe to read the
value at that location.

However, when a location exits the scope it was created
in, it is said to no longer be alive. The set of alive locations
after exiting a scope is restored back to the set of alive
locations before entering that scope.

let x: int = 10;

let q: &int;

if x < 20 {

let y = 10;

q = &y;

}

x + *q;

Here, after the if block ends, the memory location de-
clared inside that if is no longer alive. Hence, when we at-
tempt to do x + *q, we can see that we’re no longer allowed
to read that memory location, which is where we’ll halt exe-
cution.

Additionally, when a value is moved, the old location is
no longer alive, as ”ownership” of the value is now with the
new location.

{

let x: int = 10;

let y: int = x;

x + y;

}

After the operation y = x, the memory location x refer-
ences is removed from the alive set. Hence, when we attempt
to do x+y, we can see that we’re no longer allowed to read
x, which is where we’ll halt execution.

4.3.2 Mutability
This defines the mutability of the variable associated to a lo-
cation. If a location is marked as immutable, this implies that
the variable associated to that location cannot be reassigned
to a new value, and the inverse is true for mutable locations.

4.3.3 Borrowing
This indicates if a specific location is borrowed, and if so,
whether it is borrowed mutably or immutably. If a location
is borrowed mutably, it cannot be borrowed again. However,
if it is is borrowed immutably, it can be borrowed by other
immutably as well.

Like liveness, the borrowing information is also restored
when exiting a scope to its values before entering the same
scope.

let mut x: int = 10;

{

let z: &mut int = &mut x;

*z = 15;

}

let q: &int = &x;

*q + x;

Also, to remain consistent with a single mutable refernce,
observe that while there is a mutable reference to a location,
we cannot use x to modify the value.

Here, we see that the location x is borrowed mutably by
z, during which time, we cannot borrow x again. However,
when we exit the scope under which z was declared, we can
see that x is no longer borrowed, and hence, we can borrow
it immutably by q.

4.3.4 Limitations
The borrow-checker, used by Rust to guarantee linear typing,
is a much more complex algorithm, and can hence accept
several cases which this approach would fail to proceed with.
Cases where multiple mutable references under the same
scope to the same variable, where it’s clear that one mutable
reference’s usage ends before another’s begins.

Additionally, our approach requires us to always have an
intermediate variable that’s declared before we use the mem-
ory location. That is to say, we’re unable to do func(&10),
and would instead need to do: let x: int = 10; func(&x).

However, this does give us a good baseline, to cover most
of the simple examples of linear typing.

4.4 K Implementation
The approach taken by Wang et al. (2018) is to define a
configuration for the various states of Rust programs, or
cells. For example, there is a Map from memory locations in
the heap to their corresponding types, as well as a map from
locations to the number of references held to them. The cells
of the configuration are then used to define the operational
semantics of the language. We keep a similar approach in
our implementation, while changing the semantic rules that
define the language.

We additionally strip down the syntax, so as to focus on
the core features of the language, and to make the implemen-
tation simpler. Particularly, we discard arrays and structs,
and we also simplify the types available to just integers,
booleans, strings, references, functions and coroutines. We
additionally simplify all the various types of integers, which
are either unsigned or signed with different byte sizes to just
a single int.

In K, we first need to define a syntax for our language,
and then create rewriting rules, which define how we can
”rewrite” the program. A rewrite rule is fairly analagous
to operational small-step semantics. And rewriting is anal-
ogous to evaluating the program; it defines under what con-
ditions we can evaluate a certain expression, and what the
result of that evaluation is.



4.4.1 Syntax
We’ll begin by defining the syntax this language uses. Our
first grammar relates to the types that can be defined in this
language.

⟨type⟩ ::= int

| bool

| string

| & ⟨type⟩
| &mut ⟨type⟩
| fn ( ⟨types⟩ ) -> ⟨type⟩
| coro ( ⟨types⟩ )( ⟨types⟩ ) -> ⟨type⟩
| corun ( ⟨types⟩ ) -> ⟨type⟩

⟨types⟩ ::= ⟨type⟩ | ⟨type⟩ ‘,’ ⟨types⟩

Now, we can define the declarations that can be made in
this language.

⟨stmt⟩ ::= let ⟨id⟩ : ⟨type⟩ = ⟨expr⟩ ;
| let ⟨id⟩ : ⟨type⟩ ;
| let mut ⟨id⟩ : ⟨type⟩ = ⟨expr⟩ ;
| let mut ⟨id⟩ : ⟨type⟩ ;

Note that the declarations with a value are desugared into
a declaration without a value, followed by an assignment.

Next, we have expressions.

⟨expr⟩ ::= Int | Bool | String
| & ⟨expr⟩
| &mut ⟨expr⟩
| * ⟨expr⟩
| start ⟨expr⟩ ( ⟨exprs⟩ )
| call ⟨expr⟩ ( ⟨exprs⟩ )
| yield ⟨expr⟩
| ⟨expr⟩ = ⟨expr⟩

⟨exprs⟩ ::= ⟨expr⟩ | ⟨expr⟩ ’,’ ⟨exprs⟩

For brevity, we’ll exclude the normal binary and unary
operations that operate over integers, booleans and strings.

Finally, to bring this all together, we’ll define some con-
trol flow statements, along with function and coroutine dec-
larations.

⟨stmt⟩ ::= ⟨expr⟩ ;
| if ⟨expr⟩ ⟨stmt⟩ else ⟨stmt⟩ ;
| while ⟨expr⟩ ⟨stmt⟩ ;
| return ⟨expr⟩ ;
| fn ⟨id⟩ ( ⟨params⟩ ) -> ⟨type⟩ ⟨block⟩
| cr ⟨id⟩ ( ⟨params⟩ ) ( ⟨params⟩ ) -> ⟨type⟩ ⟨block⟩

⟨block⟩ ::= { ⟨stmts⟩ }

⟨params⟩ ::= ⟨id⟩ : ⟨type⟩ | ⟨id⟩ : ⟨type⟩ , ⟨params⟩

4.4.2 Configuration
In K, we represent all the information that’s needed to evalu-
ate a program as a nested multiset of items, where each item
could be a value, map, set or list, which we call the configu-
ration of the program.

For our semantics, we’ll define the following cells:

1. <stacks>: This is a map of all the function stacks in
the program. Each item here represents a single function
stack. We begin with main() running on its own stack.
Whenever a coroutine is created, a new stack is created
and added to this map. Inside a stack, we have the fol-
lowing information:

(a) <k>: This holds the actual computations of a program
that will be executed next, in the order they need to
be processed. This initially begins with all the decla-
rations, after which main() is called.

(b) <control>: This holds the function stack, which is
a list of K items. Everytime a function is called, the
remaining computations in <k> and other information
from the stack are pushed into this list. When a func-
tion returns, the top item of this list is popped, and
the remaining computations are pushed back into <k>,
with the return value of the function taking the place
of the function call in <k>.

(c) <env: This holds a mapping from variable names to
memory locations in the <store>. This is used to
lookup the memory location of a variable when it’s
used in an expression, and ensure that the variable we
reference is in scope.

(d) <id>: This is a unique identifier for this specific stack,
which allows us to understand which coroutine is be-
ing referenced when we wish to call and resume it.

2. <typeEnv> This is a map from memory locations to their
corresponding types. This is used to lookup the type of a
variable when it’s used in an expression, and ensure that
the type of the variable we reference is correct.

3. <genv> This is a version of the <env> that is constructed
before main() is called. As a result, it contains all the
function and coroutines that are declared in a program.

4. <store> This holds the actual memory of the program. It
is a map from memory locations to values. This is used to
lookup and modify the value of a variable when its used
in an expression.

5. <nextLoc> This is just a number, allows us to know
which is the next free memory location we can allocate

6. <input> and <output>: These are just list of values,
which act as abstractions for the input and output of a
program. When a read is done, we pop the first item from
<input>, and when a write is done, we push the value
to <output>. The actual input and output operations are
then done by the interpreter.



7. To ensure linear typing, we also introduced the concepts
of liveness, mutability, and borrowing, which we can de-
fine as <alive>, <mutable> and <borrow>, all holding
mappings from memory locations to their respective in-
formation.

Using this configuration, we’re now able to define the
rules that make up the semantics of this language.

4.4.3 Semantics
We’ll now begin going over the semantics of this lan-
guage. Some of the basic arithmetic rules will be omitted
for brevity. Also, to make it simpler to understand, the heat-
ing/cooling rules, which help specify the order in which
subexpressions of an expression are evaluated, are omitted.

Variable Declarations and Lookup〈
let X: T;

.

〉
k

 ⟨X ⇒ L⟩env⟨L ⇒ ⊥⟩store⟨⟨L⟩⟩alive
⟨L ⇒ T ⟩typeEnv⟨L ⇒ false⟩mutable

⟨L ⇒ ⊥⟩borrow⟨L+ 1⟩nextLoc


〈

let mut X: T;
.

〉
k

 ⟨X ⇒ L⟩env⟨L ⇒ ⊥⟩store⟨⟨L⟩⟩alive
⟨L ⇒ T ⟩typeEnv⟨L ⇒ true⟩mutable

⟨L ⇒ ⊥⟩borrow⟨L+ 1⟩nextLoc


〈

X
V

〉
k

 ⟨X → L⟩env

⟨L → V ⟩store
⟨L⟩alive


Here, we have the two basic operations available to any

variable, declaration and lookup. For declaration, we take
the variable X and assign it a memory location L in the env,
and accordingly intialize all the relevant cells. This includes
adding the type of the variable, and whether the location is
alive or out of scope. Hence, in the end, the declaration is
rewritten with ., or nothing, as the result.

For lookup, we take the variable X and lookup its memory
location L in the env, and then lookup the value V in the store.
We also ensure that the location is alive, and that the type
of the variable is correct. Hence, in the end, the lookup to
variable X is rewritten with the value V.

Function and Coroutine definitions〈
fn F(Xs) → T B

.

〉
k

 ⟨F ⇒ L⟩env⟨⟨L⟩⟩alive
⟨L ⇒ func(T,Xs,B)⟩store
⟨L+ 1⟩nextLoc


〈

cr C(Xs)(Ys) → T B
.

〉
k

 ⟨C ⇒ L⟩env⟨⟨L⟩⟩alive
⟨L ⇒ corodef(T,Xs, Y s,B)⟩store
⟨L+ 1⟩nextLoc


〈

execute⇝ .

main()

〉
k

{ }
These definitions are fairly straightforward. For a func-

tion F with parameters Xs and return type T, we consume
the definition and store it in the Env. These are the steps that
are done for a coroutine as well, and after all declarations are
consumed, the only thing remaining is a reserved execute

statement, which is rewritten to main().

Function Application and Returns〈
call func(T, Xs, B)(Vs)⇝ K

mkDecls(Xs, Vs)⇝ B ⇝ return;

〉
k

 ⟨⟨Env, Brw, Alv, K, T ⟩⟩fstack

⟨Env ← GEnv⟩env

⟨Alv⟩alive⟨Borrow⟩borrow


〈

return V ;⇝ −
V ⇝ K

〉
k

 ⟨⟨Env, Brw, Alv, K, T ⟩ → ...⟩fstack

⟨ ← Env⟩env⟨ ← Brw⟩env

⟨ ← Alv⟩alive


Here, when we reduce a call expression to a function

value, we first take the function parameters and the values
passed in, and use a helper function mkDecls to create the
declarations for each of the parameters with their values.
After this, we insert B, which is the body of the function, into
the k cell. We then push the current environment, borrow,
alive, continuation, and return type onto the function stack,
and reset the environment back to the global environment.
Note that we do not reset the alive and borrow cells, as
references passed into a function are still valid.

Next, when we’re ready to return from a function, we pop
the top of the function stack, and restore the environment,
borrow, and alive cells. The value that’s returned is then
placed before the continuation, and execution resumes.

Coroutine Start, Call and Yields
Here, we now will need to work with multiple k cells, since
each function frame has its own stack, environment and
return type. First, we define how to start a coroutine.〈

start corodef(T,Xs,Ys, B)(Vs)
coro(T,Ys, L+ 1)

〉
k1〈

.

mkDecls(Xs,Vs)⇝ mkDecls(Ys, wait)⇝ B

〉
kL+1

⟨L+ 1⟩idL+1

⟨Env ← GEnv⟩envL+1

⟨L⟩loc


Here, we create a new stack, with a new environment.

We rewrite the start operation with a coro object, which
specifies the next arguments to execute with.

We then allocate a new stack, which is used by our new
coroutine. We specify the ID of this coroutine object to be
the next location, and we set the environment to be the global
environment. We then have a specific wait operation, which
is used to indicate that the coroutine is waiting for a value
to be passed in. Hence, the mkDecls function blocks until
the coroutine is resumed, and the value for wait is passed in.
Finally, we have the body of the coroutine, which can only
be executed after the coroutine is resumed, due to the wait.

Now, we can observe how a coroutine is called.

〈
call coro(T,Ys, C)(Vs)
call coro(T,Ys, C)(Vs)

〉
k1

〈
wait

Vs

〉
kC

{ }
This, in comparison is much simpler. We simply take

the values that a running coroutine is called with, and then



replace the wait with those values. We use the id C to
recognize which stack we’re interested in.

We do not make any rewrites in the caller, which implies
that the caller is blocked until the coroutine yields. Addition-
ally, observe this call would only occur if the next expression
on the coroutine’s stack is the wait.

Finally, we can look at how a coroutine yields.

〈
call coro(T,Ys, C)(Vs)

V

〉
k1

〈
yield V

wait

〉
kC

when type(V ) = T

This is also quite elegant. We know that k1 cannot con-
tinue until the coroutine call is rewritten, and hence when we
observe a yield, we simply replace the call with the value
that’s yielded. The callee is then just made to halt and wait
for their next call, by replacing the yield expression with a
wait again. Of course, we also need to ensure the return type
of the coroutine is the same as the type of the value that’s
yielded.

Linear Typing
First, we’ll define the rules under which we can take a muta-
ble or immutable reference. Before this, we define a specific
evaluation context while taking references.

So far, we always attempt to reduce an expression down
to its value. However, for the expressions &<Exp> and
&mut<Exp>, along with assignments as we’ll observe later,
we actually wish to reduce an expression down to a location.
That is to say for &x we wish to find the variable x’s location,
and not its value.

We describe this as: &(HOLE => loc(HOLE)), which
states that the for the expression inside the reference oper-
ation, we wish to find its expression.

〈
&L

ref(T,L)

〉
k


⟨L→ (Q⇒ immut)⟩borrow
⟨L→ T ⟩typeEnv

⟨L⟩alive,when Q ̸= mut


〈

&mut L
mref(T,L)

〉
k


⟨L→ (Q⇒ mut)⟩borrow
⟨L→ T ⟩typeEnv⟨L→ true⟩typeEnv

⟨L⟩alive,when Q = ⊥


While borrowing a location, we first need to make sure

that location is still alive. For immutable references, we
wish to ensure it’s not currently mutably borrowed, and for
mutable references, it cannot be borrowed at all. If these
cases hold, we then accordingly update it to its new value.
In the end, we rewrite the expression to its respective values.

Now, we can look at the rules for dereferencing a loca-
tion.

〈
∗ref(T,L)

V

〉
k


⟨L→ V ⟩env

⟨L⟩alive
when T = type(V )


〈
∗mref(T,L)

V

〉
k


⟨L→ V ⟩env

⟨L⟩alive
when T = type(V )



We just need to ensure that the location is alive, and then
we can rewrite the expression to its value.

Assignment
We can finally look at the rules for assignment. What’s im-
portant to note, is that similar to our rules for taking refer-
ences, we wish to reduce the left hand side of the assignment
to a location, and not its value. Hence, again, we have the
same context: (HOLE => lvalue(HOLE)) = _.

First, we have a specific rule, when we’re able to also
reduce the right hand side of an assignment to a location.
This is the case when we’re moving ownership of a value
from one location to another.〈

L1 = L2

L1 = V

〉
k

{
⟨L2 → V ⟩store
⟨L2 → ⊥⟩alive

}
Here, we just need to ensure that the location we’re mov-

ing from is still alive, and then we can move the value from
one location to another. We then let the following rewrite
rules actually verify that the typing and L1’s state is valid.

〈
L = V

.

〉
k


⟨L→ (⊥ ⇒ V )⟩store⟨L⟩alive
⟨L→ T ⟩typeEnv⟨L→ ⊥⟩borrow
when T = type(V ) and Q ̸= immut


When a memory location has a ⊥ value in the store (it

has just been declared and not assigned a value), it is fine
to assign a value to it, as long as it has not been immutably
borrowed.

〈
L = V

.

〉
k


⟨L→ ( ⇒ V )⟩store⟨L⟩alive
⟨L→ T ⟩typeEnv⟨L→ Q⟩borrow
⟨L→ true⟩mutable

when T = type(V ) and Q ̸= immut


When a memory location is already assigned a value, we

need to make sure that it is mutable, and that again it has not
been immutably borrowed.

Miscellaneous Rules
We do have specific rules around blocks, as the scoping is
important to ensure that the lifetimes of variables is correctly
represented. 〈

{S}
S ⇝ reset(Env,Alive,Borrow)

〉
k

⟨Env⟩env

⟨Alive⟩alive
⟨Borrow⟩borrow


Here, S refers to the statements inside a scope. We ensure

that any variables, that are declared inside the scope, are
removed from the environment. Additionally, as lifetimes
end, the we can discard the alive and borrow contexts from
that scope.

This completes all the core rules for our language. We
choose to skip the rules for control flow statements and arith-
metic operations, as they’re all straightforward: rewrite all



the expressions until they become values, and then perform
the expected operation.

By implementing these rules in K, we’re able to generate
an interpreter for our language. We can then use this inter-
preter to execute programs written in our language and see
if they’re correct.

5. Results
The rewriting rules defined here were written in K, and ex-
ample test cases were created with this language to evaluate
the correctness of the rules. The written test cases were then
executed with the interpreter generated by K, and the results
were compared to the expected results.

During the development of the semantics, running the test
cases with the interpreter generated was helpful to identify
issues with the semantics, and to ensure that the semantics
were correct.

In the end, the defined semantics were able to correctly
identify the errors in the test cases, and also correctly execute
the programs that were written in the language. The defined
language supported all the features that were defined in
the language specification, above, as well as control-flow
through if statements and while loops. The language also
supported arithmetic operations.

However, while trying to extend the language to support
tuples, arrays, and other structures, there were several road-
blocks. Particularly, the current linear typing rules work well
for single variables, but are unable to understand partial ref-
erences.

6. Conclusion
Using K framework
We found that K alleviates a lot of the issues that arise while
writing a language, and also allow us to form a strong set of
semantics for the language. However, the learning curve for
K itself is steep, given its weak toolchain compared to most
modern languages. It also does have sometimes outdated
documentation, which can make it difficult to find the correct
way to implement certain features.

After overcoming that however, it certainly is a powerful
tool, and reduces the work needed to write a full-fledged
parser and interpreter from several thousand lines of code
to a few hundred. Although the interpreter itself is slow, it
is still a useful tool to have, as it lets programmers quickly
test and modify their language, before writing an actual
interpreter or compiler in a more performant language.

The executable semantics allow us to ensure that the ob-
served path of execution at runtime is safe according to our
linear typing rules, but it does not allow us to identify and
ensure that a program as whole, regardless of its execution
path, will be safe. To do this, we will need to implement
static type-checking, which is much more difficult to accom-
plish with linear types by itself.

Coroutines and Linear Types
When coroutines are introduced to a linear type system,
the problem even becomes more difficult. Currently, with
functions, we know that any references that are passed into
a function will be valid for the duration of the function’s
execution. For coroutines, it’s difficult to statically show
that, as after a yield, the coroutine’s next call may be from a
different scope, and the references may no longer be valid.

Additionally, if we wish for a function to return refer-
ences to its caller, we just need to check whether the refer-
ence’s lifetime is larger than the function’s. That is to say, the
value was created before the function was called, and hence
will be valid for the duration of the function’s execution and
after it returns. For coroutines, this is no longer the case, as
yielded references from local variables in a coroutine could
be plausbibly be returned to the caller.

What all of this concludes, is that the interactions between
linear types and coroutines is very difficult to statically un-
derstand. While it might be possible to have a static linear
type system in a language with coroutines, the resulting type
system might be too conservative, preventing most uses of
references inside coroutines.

Additionally, while not explored in this project, it’s un-
clear what the semantics for symmetric coroutines would
look like in a linear type system. To construct three symmet-
ric coroutines, each coroutine would need to have a reference
to the other two. However, these references should be muta-
ble, as upon every call to the coroutine, the coroutine would
change in some manner, and this would hence be against the
linear type system.

Coroutines vs other Concurrency Patterns
In general, it seems that Coroutines are a rarely adopted de-
sign pattern for concurrency in a language. Most languages
that adopt coroutines, either go for asynchronous program-
ming, or generators. Both of these are severely limited in
comparison to coroutines, as they do not allow for the same
level of control over the execution of the program. However,
they are much simpler for programmers to understand, and
can provide similar functionality in most cases.

Some of the ideas behind coroutines, like cooperative task
scheduling, have been adopted by languages. For example in
Go, there are Goroutines, which are lighterweight threads,
and by using message passing as the main construct for co-
operative concurrency, they can be used to write concurrent
programs that are easier to understand than coroutines.

Future Work
In conclusion, we’ve succesfully defined executable formal
semantics for a linearly-typed language with coroutines us-
ing K. This allows us to identify errors in programs at run-
time, and also to execute programs written in the language.
The language includes basic types, control flow, functions,
and coroutines, but lacks support for complex data types.



In the future, we would like to extend the language to
support tuples, arrays, and other complex data types. We
would also like to look into whether static type-checking for
such a language would be possible, which would allow us to
identify errors in programs before they are executed.

References
K. Anton and P. Thiemann. Typing coroutines. In R. Page,

Z. Horváth, and V. Zsók, editors, Trends in Functional Program-
ming, pages 16–30, Berlin, Heidelberg, 2011. Springer Berlin
Heidelberg. ISBN 978-3-642-22941-1.

A. L. D. Moura and R. Ierusalimschy. Revisiting corou-
tines. ACM Trans. Program. Lang. Syst., 31(2), feb 2009.
ISSN 0164-0925. doi: 10.1145/1462166.1462167. URL
https://doi.org/10.1145/1462166.1462167.

D. J. Pearce. A lightweight formalism for reference lifetimes and
borrowing in rust. ACM Trans. Program. Lang. Syst., 43(1),
apr 2021. ISSN 0164-0925. doi: 10.1145/3443420. URL
https://doi.org/10.1145/3443420.

E. C. Reed. Patina : A formalization of the rust programming
language. 2015.

P. Wadler. Linear types can change the world! In Programming
Concepts and Methods, 1990.

F. Wang, F. Song, M. Zhang, X. Zhu, and J. Zhang. Krust: A
formal executable semantics of rust. CoRR, abs/1804.10806,
2018. URL http://arxiv.org/abs/1804.10806.


